18 research outputs found

    The Logic of the RAISE Specification Language

    Get PDF
    This paper describes the logic of the RAISE Specification Language, RSL. It explains the particular logic chosen for RAISE, and motivates this choice as suitable for a wide spectrum language to be used for designs as well as initial specifications, and supporting imperative and concurrent specifications as well as applicative sequential ones. It also describes the logical definition of RSL, its axiomatic semantics, as well as the proof system for carrying out proofs

    Probabilistic Risk Assessment of an Obstacle Detection System for GoA 4 Freight Trains

    Full text link
    In this paper, a quantitative risk assessment approach is discussed for the design of an obstacle detection function for low-speed freight trains with grade of automation (GoA)~4. In this 5-step approach, starting with single detection channels and ending with a three-out-of-three (3oo3) model constructed of three independent dual-channel modules and a voter, a probabilistic assessment is exemplified, using a combination of statistical methods and parametric stochastic model checking. It is illustrated that, under certain not unreasonable assumptions, the resulting hazard rate becomes acceptable for specific application settings. The statistical approach for assessing the residual risk of misclassifications in convolutional neural networks and conventional image processing software suggests that high confidence can be placed into the safety-critical obstacle detection function, even though its implementation involves realistic machine learning uncertainties

    Automated generation of formal safety conditions from railway interlocking tables

    No full text

    CASL - The Common Algebraic Specification Language: Semantics and Proof Theory

    No full text
    CASL is an expressive specification language that has been designed to supersede many existing algebraic specification languages and provide a standard. CASL consists of several layers, including basic (unstructured) specifications, structured specifications and architectural specifications (the latter are used to prescribe the structure of implementations). We describe an simplified version of the CASL syntax, semantics and proof calculus at each of these three layers and state the corresponding soundness and completeness theorems. The layers are orthogonal in the sense that the semantics of a given layer uses that of the previous layer as a "black box", and similarly for the proof calculi. In particular, this means that CASL can easily be adapted to other logical systems
    corecore